Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase

نویسندگان

  • Zulfiqar Ahmad
  • Florence Okafor
  • Thomas F. Laughlin
چکیده

Here we describe the role of charged amino acids at the catalytic sites of Escherichia coli ATP synthase. There are four positively charged and four negatively charged residues in the vicinity of of E. coli ATP synthase catalytic sites. Positive charges are contributed by three arginine and one lysine, while negative charges are contributed by two aspartic acid and two glutamic acid residues. Replacement of arginine with a neutral amino acid has been shown to abrogate phosphate binding, while restoration of phosphate binding has been accomplished by insertion of arginine at the same or a nearby location. The number and position of positive charges plays a critical role in the proper and efficient binding of phosphate. However, a cluster of many positive charges inhibits phosphate binding. Moreover, the presence of negatively charged residues seems a requisite for the proper orientation and functioning of positively charged residues in the catalytic sites. This implies that electrostatic interactions between amino acids are an important constituent of initial phosphate binding in the catalytic sites. Significant loss of function in growth and ATPase activity assays in mutants generated through charge modulations has demonstrated that precise location and stereochemical interactions are of paramount importance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of phosphate binding residues of Escherichia coli ATP synthase.

Four positively-charged residues, namely betaLys-155, betaArg-182, betaArg-246, and alphaArg-376 have been identified as Pi binding residues in Escherichia coli ATP synthase. They form a triangular Pi binding site in catalytic site betaE where substrate Pi initially binds for ATP synthesis in oxidative phosphorylation. Positive electrostatic charge in the vicinity of betaArg-246 is shown to be ...

متن کامل

Modulation of charge in the phosphate binding site of Escherichia coli ATP synthase.

This paper presents a study of the role of positive charge in the P(i) binding site of Escherichia coli ATP synthase, the enzyme responsible for ATP-driven proton extrusion and ATP synthesis by oxidative phosphorylation. Arginine residues are known to occur with high propensity in P(i) binding sites of proteins generally and in the P(i) binding site of the betaE catalytic site of ATP synthase s...

متن کامل

Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase.

The rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase is of the order of 10(11)-fold. We present a cyclic enzyme mechanism for the reaction, relate it to known F(1) X-ray structure and speculate on the linkage between enzyme reaction intermediates and subunit rotation. Next, we describe five factors known to be important in the Escherichia coli enzyme for the rate acceleration. First...

متن کامل

Role of Asn-243 in the Phosphate-binding Subdomain of Catalytic Sites of Escherichia coli F1-ATPase*

In the catalytic mechanism of ATP synthase, phosphate (Pi) binding and release steps are believed to be correlated to -subunit rotation, and Pi binding is proposed to be prerequisite for binding ADP in the face of high cellular [ATP]/[ADP] ratios. In x-ray structures, residue Asn-243 appears centrally located in the Pibinding subdomain of catalytic sites. Here we studied the role of Asn-243 in ...

متن کامل

Functional arginyl residues as ATP binding sites of glutamine synthetase and carbamyl phosphate synthetase.

The reaction of phenylglyoxal with two enzymes in which ATP plays a complex role has been studied. Both ovine brain glutamine synthetase and Escherichia coli carbamyl phosphate synthetase [carbamoyl-phosphate synthase (glutamine); ATP:carbamate phosphotransferase (dephosphorylating, amido-transferring); EC 2.7.2.9]were inactivated by phenylglyoxal. The specificity of this reagent for arginyl re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011